Research
Machine learning, optimization and signal processing
Data-driven optimization, machine learning, and signal processing, and those theories and applications permeate various technical and application areas, including, for instance, engineering, computer science, data science, medical science, life science, physics, social science, and humanities. We are dedicated to optimization, machine learning, and signal processing, and their theories, algorithms, and applications for small- and large-scale data. Specifically, we address non-linear and non-convex optimization and structured learning constrained with non-linear structure, for instance, orthogonality, positive definiteness, fixed-rankness, non-negativity, and sparsity. Our focus includes the development and validation of optimization and learning algorithms, the establishment of new machine learning models, and practical applications. For those items, we tackle with respect to theoretic approaches and numerical evaluations. Its applications include data analysis, computer vision, video surveillance, network traffic analysis, distributed sensing, etc.
Keyword: non-linear convex and non-convex optimization, Riemannian manifold optimization, large-scale optimization, stochastic optimization, online learning, subspace learning, robust learning, sparse modeling, low-rank matrix and tensor approximation and factorization, optimal transport, geometric clustering, network & graph embedding, graph representation learning, graph classification, sequential data classification
機械学習,最適化,信号処理とその応用
最適化,機械学習,信号処理の理論および応用技術は,情報通信工学を含む工学,計算機科学,データ科学,医学,生命科学,物理学,ソーシャル科学,人文科学など,様々な分野に広く浸透し活用されています.笠井研究室では,スモールデータからビッグデータを対象とした機械学習,最適化,信号処理の理論と応用について研究しています.特に,パラメータやデータが特殊な構造制約(直交性,正定値性,固定ランク,非負値性,スパース性など)を有する構造制約付き最適化・学習,とりわけ非線形構造制約付き非線形・非凸最適化・学習に着目しています.研究対象は,最適化・学習のためのアルゴリズムの開発とその評価,最適化・学習モデルの構築,またアプリケーションへの適用について,数値実験と理論的解析の両面からアプローチします.対象とするアプリケーション分野は,コンピュータ・ビジョン,バイオデータ処理,医療画像,映像カメラ監視,ネットワークトラヒック解析,データ解析,分散センシングなど,多彩です.
キーワード:非線形凸・非凸最適化,リーマン多様体最適化,大規模最適化,確率的最適化,オンライン学習,部分空間学習,ロバスト学習,スパースモデリング,低ランク行列・テンソル近似・分解,最適輸送問題,幾何クラスタリング,ネットワーク・グラフ埋め込み,グラフ表現学習,グラフ分類,シーケンシャルデータ分類