LATEST NEWS
Optimization, machine learning, and signal processing
We are dedicated to optimization, machine learning, and signal processing, and their theories, algorithms, and applications for small- and large-scale data. Specifically, we address optimization algorithms, linear & non-linear optimization problems, convex & non-convex optimization problems, classification and clustering problems, distance and space learning problems, structure learning, and optimal transport problems. Our focus includes the development and validation of optimization and learning algorithms, the establishment of new machine learning models, and those practical applications. For those items, we tackle with respect to theoretic approaches and numerical evaluations. Its applications range from data analysis, computer vision, video surveillance, network traffic analysis, distributed sensing, graph analysis, and so on.